产品概述:

ELab v1 迷你电子实验室,是一款专注于电子元件与模块闭环测 试的集成化实验平台。其核心功能涵盖波特图分析、FFT 频谱分析、 频谱扫描、电压扫描,以及与 Matlab 的同步在线采集调试等,可实 现对电子器件性能的全方位检测。该设备支持单台 PC 同步接收多 通道信号,并能通过 TCP 协议将数据汇总至上级系统,确保测试数 据的高效整合与集中管理。在兼容性方面,它完美适配 Python 与 Matlab 等主流数据分析平台,为用户提供灵活的数据分析工具选择。 无论是课堂教学中的原理演示、科研阶段的设备预研,还是工程实践 中的样机试制, ELab v1 都能精准契合多元场景的需求,为电子领域 的教学、研发与实践工作提供稳定可靠的技术支持。

1. 输入测量功能

- 通道配置:双通道单端输入(CH1、CH2),直流耦合方式。
- 输入阻抗: 300 kΩ~2 MΩ (可调),容抗 ≤10 pF。
- 测量范围:
 - 。 低档位: 0~10 V (高精度模式)
 - 。 高档位: 0~100 V (扩展模式)
- ADC 精度: 12 位分辨率,确保高精度信号采集。
- 采样率: 50 kS/s~15 MS/s(可编程调节),适应不同带宽需求。

2. 输出功能

- 通道配置: 两路独立输出(OUT1、OUT2), 每路由两个子通道并联组成。
- 波形生成:
 - 。 方波: 幅度 0~3 V, 频率 1 kHz~300 kHz, 占空比与相位可调。

。 正弦波/三角波/自定义波形: 幅度 0~3 V, 频率 100 Hz~30 kHz。

- 电源输出:
 - 2.5 V / 5 V 直流输出: 支持电子模块闭环测试, 5 V 最大输出电流 50 mA。
 - 。 OUT1 电流测量: 最大测量电流 3 mA。

3. 数据传输与通信

- USB 接口:
 - 。 支持多设备并联工作。
 - 。 实时数据通过 TCP 协议上传至服务器,支持多客户端(PC) 同步 访问。
- 软件支持:
 - 。 提供 Windows & Ubuntu 驱动及 API, 兼容 MATLAB 等数学软件, 便于二次开发。
 - 。 服务器端支持数据级联、汇总及高级分析。

4. 安全与限制

- 输入保护:
 - 。 输入电压严禁超过 100 V, 否则可能导致设备永久损坏。
 - 。 禁止将设备 GND 直接连接至 110 V/220 V 市电,以免烧毁设备或 PC。
- 误差说明:
 - 。 误差范围 1%~5%。
- 触发功能:
 - 。 无硬件触发支持,采用直接采集显示模式。

5. 硬件接线示意图

(注:此处可插入接线图或提供详细引脚定义,例如:)

- 输入端子: CH1 (+/-)、CH2 (+/-)
- 输出端子: OUT1 (A/B) 、OUT2 (A/B)
- **电源接口**: 5V_OUT、GND
- USB: Micro-USB 接口

应用场景

- 电子电路调试、传感器信号采集
- 嵌入式系统测试(如 PWM 波形生成)
- 教育实验、电化学、科研数据分析

程序安装与启动指南

1. 程序安装(绿色版)

下载验证:

下载程序包 qiftech.cn.lab.tar。

在终端运行以下命令验证文件完整性: bash # 计算 MD5 校验值 CertUtil -hashfile qiftech.cn.lab.tar MD5 # 计算 SHA1 校验值 CertUtil -hashfile qiftech.cn.lab.tar 比对输出的哈希值与官方提供的校验值,确保文件完整无误。

- 程序启动:
 - Windows/Linux:
 - 解压后可直接运行 qiftech.cn.lab,无需安装。
 - Linux 建议: 使用 sudo ./qiftech.cn.lab 启动, 以避免 权限问题。
 - 。 **注意事项:** 若遇到 USB 连接失败,可能是因高速 USB 设备占用总线导致。解 决方法:
 - 1. 重新插拔 USB 设备。
 - 2. 关闭并重启 qiftech.cn.lab 程序。

2. 驱动安装

• Linux 系统:

大多数 Linux 发行版已自带驱动。 Ubuntu 额外支持:

运行以下命令安装 libusb 库: bash

sudo apt-get install libusb* **设备连接检查**:

接入设备后,执行 sudo 1susb -t, 查看是否有新设备识别。

• Windows 系统(Win7/10):

使用 Zadig 工具安装驱动。 选择 WINUSB (推荐) 驱动并完成安装。

Zadig	- 🗆 🗙
wice Options Help	
Qiftech.on Custom Human interface	✓ □Edit
Driver WinUS8 (v6.1.7600.16385) WinUS8 (v6.1.7600. US8 ID 0483 5750 Reinstal Driver WCID 2	16385) More Information WHUSB (Boub) Target Driver Boub K WHUSB (Microsoft)
evices found.	Zadig 2.2.685

安装成功后,系统将识别设备。

3. 设备连接优化

直接连接 PC∶

建议将 ELab v1 直接插入电脑 USB 接口,避免使用 USB 集线器。 确保设备独占 USB 高速总线(不与其他高速设备共享)。 供电要求: 典型工作电流 <500 mA,建议使用 优质 USB 2.0 线缆。 支持 3~5 台 ELab v1 并联使用,但需确保供电稳定。 设置保存: 退出程序时,当前配置会自动保存,下次启动时恢复。

4. 设备选择与界面操作

 启动程序后,进入菜单: Tools → Boards → 选择 "ELab v1 迷你电子实验室"。
 确认设备连接状态后,即可开始使用。

常见问题处理

USB 连接不稳定:

更换 USB 端口或线缆。 关闭其他占用高速总线的设备(如摄像头、采集卡)。 **驱动安装失败**:

在 Windows 设备管理器中手动更新驱动,选择 WINUSB。

Linux 用户可尝试重新加载 libusb 模块: Bash

sudo modprobe usbcore

快速入门指南

1. **硬件连接**

将两个探头上的 CH1、CH2 接口分别连接电感,并将其共同接入输出端 OUT1。

2. 波形设置
 进入 PWM 波形设置界面, 输入 10000Hz 参数, 设备将自动生成并显示方波轨迹。
 3. 频率测量

点击暂停键冻结波形后,点击方波轨迹上的任意两点,系统可自动计算并显示两点 间的频率值。

File	Tools	Help							
00									
			Restore	Save	r(Hz)	Phase	Phase(A-B)	dB(1)	VdB
				Ch	2 Ch2	13.5	4.4	1.03	-3.32
e									
÷.		proven and	·····	Ch1	× · · · ·				>
FFT	f Flot		150 200 ne(uS). SanFrequen	250 300 350 ncy: 1900(&Hz)	400				
1			Valtere (V)	Frequency scanning		Sam_Frequency(k	Hz)		
		USD	100V	10k-750k	0	8000 190	0 500	140	
S	witchSp	eed 10 🗘	100	VoltageScanning(7-80kHz)	Stop	Ch1,2		Output Level(0	.01-3V)
U	SB Conf	:0 0		Ti vod Promonov Comming	_	PWM		1.00	•
			Current (mA)	StartFrequency(HZ)	200000	Out1≈10kH	z	Set Fr≈10kHz	
			000+1 0 022	SteppedFrequency(0.1kHZ)	50	Out2		10000	
			0ut1 0.038	Repeat	1			Duty cycle or 3	Pulse
				Points	300	Stop		0	

电压测量

- 单端电压测量: 支持同时测量 CH1、CH2 通道与 GND 之间的单端电压。
- 数据显示:可显示通道名称、电压范围、频谱范围、峰峰值、直流电压分量、交流 电压分量、分贝值、相位与相位差、dB 与 dB 差,以及支持 CH1-CH2 差值计算、 CH2/CH1 比值计算、Abs 绝对信号值计算。

电流测量

- 5V 输出电流测量: 专为 5V 电子产品测试设计, 最大可提供 50mA 电流。
- OUT1 输出电流测量:适用于低功耗设备测试,最大可提供 3mA 电流。

FFT 频谱分析

- 奈奎斯特频率提示:采样频率需满足奈奎斯特采样定理(采样频率≥2倍信号最高频率),否则高于奈奎斯特频率的信号将产生混叠,导致高频分量被镜像到低频区域。
- 频谱计算操作: 点击暂停后, 使用鼠标双击频谱图上任意两点, 系统将自动计算并显示两点间的 FFT 频谱相关数值。

频率扫描功能说明

频率范围设置

频率扫描范围为 1kHz-1.5MHz, 各采样通道可独立设置。以下为 LC 谐振电路频率扫描操 作指南:

LC 频率扫描配置

- 1. 硬件连接参考: 请参考 LTspice 模拟原理图进行连线, 需添加以下关键元件:
 - L1: 三脚升压电感 (1.5mH, 工形电感)
 - C3: 10nF 电容
- 2. **设备连接**:
 - CH1: 连接至被测电路信号输入端
 - CH2: 连接至被测电路信号输出端
 - OUT1: 连接至被测电路激励源输入端
- **注意**:原理图中未标注的元件为电路寄生参数,实际测试时无需额外添加。

- 采样频率设置
 - 将 CH1 和 CH2 的采样频率设为 8MHz (确保满足奈奎斯特采样定理)。
- 扫描范围设置
 - 起始频率(Start Frequency): 输入 100kHz
 - 步进频率 (Stepped Frequency): 输入 5kHz (即 0.1kHz 的 50 倍)
- 扫描精度设置
 - **重复次数(Repeat):** 设为 1(增大该值可提高结果精度,但会降低扫描 速度)
 - 采样点数 (Points): 建议设置为 100-300 点
- 启动与结果查看

设置完成后点击"开始"按钮,扫描完成后可通过打开"波特图 DEMO2"查看频率扫描结果。

Frequency scanning 20K-1.5M	3	San_Frequency(kHz) -
VoltageScanning	Stop	Ch1, 2
FixedFrequencyScanning	-	PVM
StartFrequ 100.0kHZ	100000	Out1≈10kHz
SteppedFrequency(0.1kHZ)	50	Out2≈10kHz
Repeat	1	Ston
Points	300	2100

波特图操作指南

基本操作

 数据查看:频率扫描完成后,打开波特图界面,点击曲线上任意点可查看对应的 X 轴 (频率)和 Y 轴(幅度 / 相位)数值。

演示案例

- **DEMO1**: 升压电感 68mH 与 10nF 电容串联的频率扫描结果
- **DEMO2**: 升压电感 1.5mH 与 10nF 电容串联的频率扫描结果(推荐使用此案例观 察谐振现象)

功能说明

- Log 模式: 切换对数坐标显示
- ABS 绝对值:显示信号绝对值
- Smooth 平滑:通过算法平滑曲线,提升可视化效果(注意:过度平滑可能导致关 键数据失真)

操作建议

- 1. 打开 DEMO2 案例
- 2. 适度应用平滑功能优化曲线显示
- 3. 观察谐振频率点(约 200kHz 附近)的幅度峰值和相位突变特征

真实数据

平滑功能等

LTspice 模拟与实际测量对比分析

将 LTspice 模拟结果与 DEMO2 实测数据对比可见:

- **谐振频率吻合度**:两者均在 200kHz 附近出现明显的谐振峰,理论计算与实测结果 高度匹配。
- **曲线形态差异**: LTspice 模拟曲线更光滑,而实测曲线因噪声干扰存在轻微波动, 可通过设备的 "Smooth 平滑" 功能优化显示效果。
- 品质因数 (Q 值): 实测 Q 值略低于模拟值,反映实际电路存在额外损耗(如寄生 电阻)。

结论: 设备测量结果与 LTspice 仿真高度一致, 验证了电路设计的准确性。

电压扫描功能说明

基本配置

- 电流选择: 支持切换测量模式, 可选择 5V 输出电流或 OUT1 输出电流。
- 核心原理:通过调节 PWM 占空比实现电压调节,需配合电容完成电压扫描过程。

二极管扫描实验配置

1. 元件准备 (需额外添加)

- C1: 电解电容
- U2: 9013 三极管
- U4: IN4007 二极管
 (注: 电路中其他未标注元件为寄生参数,无需额外接入)

2. 硬件连接

按图示完成接线,具体接口对应:

- 5V 输出端
- CH1、CH2 信号测量端
- OUT1 信号输出端
- GND 接地端

连接完成后即可启动电压扫描,通过监测 PWM 占空比变化与电压响应的关系,实现对二 极管电路特性的分析。

电压扫描参数配置指南

1. 采样频率设置

○ 将 CH1 和 CH2 的采样频率设置为 "NO2 档" (适用于当前实验的预设档 位)。

- 2. 电流模式选择
 - o Current(mA):选择 "5V" 模式 (对应 5V 输出电流测量)。
- 3. 扫描范围设置
 - **起始频率 (Start Frequency)**: 输入 50kHz
 - 步进频率 (Stepped Frequency): 电压扫描模式下无需设置,系统自动忽略该参数。
- 4. 扫描精度设置
 - **重复次数 (Repeat)**: 设为 1 (增大该值可提高结果精度,但会降低扫描速度)
 - 采样点数 (Points): 设置为 100 点
- 5. 启动与结果查看

设置完成后点击 "开始" 按钮, 扫描完成后打开 "电压扫描图" 查看结果, DEMO 示 例展示了频率 - 电压扫描的典型结果。

T 1. (T)	Frequency scanning	Sam_Frequency(kHz)				
100V	10k-750k	0	8000 1900 5			
107	VoltageScanning(7-80kHz)	Stop	Ch1,2			
	FixedFrequencyScanning		PWM			
Current (mA)	StartFrequ 50.0kHZ	50000	0ut1≈10kHz			
Out1	SteppedFrequency(0.1kHZ)	50	Out2≈10kHz			
outr	Repeat	1	Stop			
	Points	100	Doop			

打开电压扫描结果 DEMO 后,可按以下步骤调整视图:

- 1. 点击菜单 "X1T2", 实现 XY 坐标翻转;
- 2. 选择 "Y+T-", 完成 Y 坐标轴正负方向翻转;
- 3. 启用"LOG (对数)"模式,即可得到目标视图 (如下图示)。

通过坐标变换与显示模式调整,可更清晰地观察电压随扫描参数的变化规律,便 于分析电路的电压响应特性。

LTspice 模拟与实测结果对比分析

将实测数据与 LTspice 模拟结果对照,关键参数对应关系及特征如下:

- **电压比值对应**: 实测中 CH1/CH2 的比值, 与模拟电路中 V (CH1)/V (CH2) 的计算 值相对应;
- 电流参数对应: 实测 5V 输出电流 (单位 mA), 对应模拟电路中流过电阻 R2 的 电流 | (R2)。

通过对比可见, 二者在二极管特性曲线的关键拐点处高度吻合: 当二极管两端电压达到 0.7V 的导通阈值时, 电流均呈现明显上升趋势, 拐点处电流值稳定在 5-6mA 区间, 验证了实测数据的准确性与电路模型的可靠性。

定点频率扫描操作指南

1. 功能说明

定点频率扫描用于固定频率和占空比条件下的电流测量,支持选择 5V 输出电流或 OUT1 输出电流。

- 2. 参数设置
 - 采样频率:选择 CH1、CH2 的采样频率为 "NO2 档"
 - **频率**: 设置为 50kHz (保持恒定)
 - 采样点数: 设置为 30 点
- 3. 操作步骤
 - 完成参数设置后点击 "开始" 按钮
 - 扫描完成后打开 "电压扫描图" 查看结果
 - 点击 "SAVE" 按钮保存当前结果

此模式适用于特定频率点下的电路特性分析,如测量谐振点电流、验证特定频率响应等场景。

··· 1. (**)	Frequency scanning	_	Sam_Frequency(kHz)
100V	10k-750k	0	8000 1900
100	VoltageScanning(7-80kHz)	Stop	Ch1,2
	FixedFrequencyScanning	_	PWM
Current (mA)	StartFrequ 50.0kHZ	50000 🗘	Out1≈10kHz
Out1	SteppedFrequency(0.1kHZ)	50	Out2≈10kHz
	Repeat	1	Ston
	Points	30	0000

定制波形功能说明

1. **输入规范**

需输入长度为 127 的数组 数组中每个元素取值范围为 0-4095(12 位精度)

2. 功能应用

通过自定义数组数值,可实现以下功能:

调节输出信号幅度 生成任意波形(方波、三角波、锯齿波等) 设计特定频率 / 相位的复杂信号

将数组输入系统后,可通过波形预览功能验证输出效果,适用于信号处理实验、设备驱动测 试等场景。

3570,35	69,356	8,3567, 3,3567,	3566.3	3565.	3564	,356	8,35 3,35 9 35	62.	356	1,35	60,	3559	,355	8,3	557	,3556
3540,35	39,353	8,3537.	10.10,	10,10	,10,1	10.10	10.10	10,1	10.1	0,10	0,10	,10,	10,10	0,10	0,10	.10.1
10,10,1	0,10,10	10,10,	10,10,1	0,10,	10,1	0,10	10,1	10,			-				-	
	Der	nol														

输出功能说明

输出通道与波形类型

OUT1、OUT2 支持 PWM 波、正弦波、三角波输出,具体模式如下:

- PWM-PWM3 模式: OUT1 与 OUT2 为并联输出
- PWM4-PWM5 模式: OUT1 与 OUT2 为串联输出

方波输出特性

- 参数范围: 3V 输出幅度,频率 1kHz-0.3MHz,支持占空比与相位调节
- 调节方式: 切换 PWM 模式后, 通过调节 "Duty cycle"(占空比)或 "Pulse"(脉冲 参数)实现参数配置

细分模式说明

- 1. PWM 模式
 - 相位差: OUT1 与 OUT2 相位差为 0°
 - 占空比: OUT1 固定为 1/2, OUT2 可灵活调节
- 2. PWM1 模式
 - 相位差: OUT1 与 OUT2 相位差为 0°
 - 占空比:两通道均支持独立调节
- 3. PWM2 模式
 - 。 相位差: OUT1 与 OUT2 相位差为 90°
 - 。 占空比: 两通道均支持独立调节
- 4. PWM3 模式
 - 相位差: OUT1 与 OUT2 相位差为 0°(相位可调节)
 - 。 占空比: 固定为 1/2

- 其他波形:支持 0V-3V 输出,频率 100Hz-30kHz,包含正弦波、三角波及 自定义波形(通过 "Output Level" 调节输出幅度)
- 5. PWM4、PWM5 模式
 - 通道特性: 单通道独立输出(OUT1 对应 PWM4, OUT2 对应 PWM5)
 - 参数调节:频率独立设置,占空比均可灵活调节

通过多模式切换与参数配置,可满足复杂电路测试、波形合成及相位特性分析等多样化需求。

•
•
•

数据导出与 MATLAB 协作指南

数据导出功能

• 文本导出: 右侧文本窗口支持将测量样本导出为 TXT 格式文件, 可直接用于 MATLAB、Excel 等软件进行后续数据处理与分析。

与 MATLAB 协作操作步骤

1. **硬件连接**

○ 连接设备:将 OUT1 输出端接入 CH1 通道,OUT2 输出端接入 CH2 通道。

- 2. 参数配置
 - 设定 CH1 信号为 100kHz 脉冲(模拟时钟信号)
 - 设定 CH2 信号为 20kHz 脉冲,并修改脉宽参数,使其每隔一定时间生成
 一个触发信号(实现时钟与触发的同步联动)。
- 3. **数据获取与处理**
 - 启动设备采集数据后, 导出 TXT 格式文件
 - 在 MATLAB 中导入数据,可通过编写脚本实现时钟信号与触发信号的时序 分析、脉冲间隔计算、同步性验证等深度处理。

此方案适用于时序逻辑验证、触发机制模拟等实验场景,为数字电路设计与信号同步研究提供便捷的软硬件协同平台。

terre Xterre atterre Re	store Sa	ve	V Perk Fr	PerkFr(Hz)	Phase	Phase
X Y		Ch1 Ch1	1.21	98148.0	131.3	0.0
		Ch2	0.35	39815.0	85.0	-46.3
		<				>
50 100 150 20 Time(uS). SanFro	0 250 300 350 equency: 1900(kHz)	400				
FFT Plot			,			•
	Frequency scanning		Sam_Frequen	cy(kHz)		
Usb 100V	10k-750k	0	8000	1900 500	140	
100	VoltageScanning(7-80kHz)	Stop	Ch1, 2	Outp	ut Level(0.01-3	W)
SwitchSpeed	FixedFrequencyScanning	1	PWM4	1.00	î.	*
10 Current (mÅ) USB Conf:0	StartFrequency(HZ)	200000 🗘	0ut1≈100	kHz Set	Fr≈20kHz	
0	SteppedFrequency(0.1kHZ)	50 🗘	0ut2≈201	kHz 2000	10	-
	Repeat	1	-	Duty	cycle or Pulse	r
	Points	300	Stop	11		*

打开 qiftech.cn.yanan.server.exe

打开 MATLAB 在线免费版本,即可在线联调。

